6 research outputs found

    Analysis and Prediction of Deforming 3D Shapes using Oriented Bounding Boxes and LSTM Autoencoders

    Full text link
    For sequences of complex 3D shapes in time we present a general approach to detect patterns for their analysis and to predict the deformation by making use of structural components of the complex shape. We incorporate long short-term memory (LSTM) layers into an autoencoder to create low dimensional representations that allow the detection of patterns in the data and additionally detect the temporal dynamics in the deformation behavior. This is achieved with two decoders, one for reconstruction and one for prediction of future time steps of the sequence. In a preprocessing step the components of the studied object are converted to oriented bounding boxes which capture the impact of plastic deformation and allow reducing the dimensionality of the data describing the structure. The architecture is tested on the results of 196 car crash simulations of a model with 133 different components, where material properties are varied. In the latent representation we can detect patterns in the plastic deformation for the different components. The predicted bounding boxes give an estimate of the final simulation result and their quality is improved in comparison to different baselines

    Homogeneous multifocal excitation for high-throughput super-resolution imaging

    No full text
    Super-resolution microscopies have become an established tool in biological research. However, imaging throughput remains a main bottleneck in acquiring large datasets required for quantitative biology. Here we describe multifocal flat illumination for field-independent imaging (mfFIFI). By integrating mfFIFI into an instant structured illumination microscope (iSIM), we extend the field of view (FOV) to >100 x 100 mu m(2) while maintaining high-speed, multicolor, volumetric imaging at double the diffraction-limited resolution. We further extend the effective FOV by stitching adjacent images for fast live-cell super-resolution imaging of dozens of cells. Finally, we combine our flat-fielded iSIM with ultrastructure expansion microscopy to collect three-dimensional (3D) images of hundreds of centrioles in human cells, or thousands of purified Chlamydomonas reinhardtiic entrioles, per hour at an effective resolution of similar to 35 nm. Classification and particle averaging of these large datasets enables 3D mapping of posttranslational modifications of centriolar microtubules, revealing differences in their coverage and positioning

    Review of the synergies between computational modeling and experimental characterization of materials across length scales

    No full text
    corecore